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Discrete nonlinear model with substrate feedback
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We consider a prototypical model in which a nonlinear field~continuum or discrete! evolves on a flexible
substrate which feeds back to the evolution of the main field. We identify the underlying physics and potential
applications of such a model and examine its simplest one-dimensional Hamiltonian form, which turns out to
be a modified Frenkel-Kontorova model coupled to an extra linear equation. We find static kink solutions and
study their stability, and then examine moving kinks~the continuum limit of the model is studied too!. We
observe how the substrate effectively renormalizes properties of the kinks. In particular, a nontrivial finding is
that branches of stable and unstable kink solutions may be extended beyond a critical point at which an
effective intersite coupling vanishes; passing this critical point does not destabilize the kink. Kink-antikink
collisions are also studied, demonstrating alternation between merger and transmission cases.
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Soft condensed matter systems, such as vesicles, mic
bules, and membranes, have recently attracted a lot of a
tion in both biological and industrial applications@1–4#.
More generally, physical systems at the nanoscale includ
nanotubes and electronic and photonic waveguide struct
@5,6# have nontrivial geometry and are influenced by su
strate effects. These wide classes of problems, many
which are inherently nonlinear, raise the question of the
terplay between nonlinearity and an adaptive substrate
cluding, in particular, a possibility of developing curvature
the substrate due to feedback forces from the nonlinear
tem. Some of these systems such as, for instance, the D
double strand@7,8#, are also inherently discrete.

In this situation, the derivation of evolutionary equatio
for intrinsic fields in a nonlinear system interfacing with
flexible substrate should take into regard the local dynam
and the feedback of the substrate. A context where th
phenomena can easily manifest themselves is elasticity. U
ally, models of particles connected by springs, such as
Frenkel-Kontorova~FK! model @9#, assume that the spring
are strictly linear. However, in reality the spring consta
may depend on the spring’s stretch. In this case, we
meaning not a straightforward generalization of the
model that includes the spring’s anharmonicity, but a diff
ent system, in which the spring constant obeys its own
namical equation, see below.

There is an increasing body of literature dealing with t
interplay of nonlinearity, discreteness, and a substrate sub
to curvature. Usually, even if the substrate is curved, its
ometry is assumed to befixed, see, e.g., Ref.@10#. However,
for many applications, ranging from condensed matter to
tics to biophysics, it is quite relevant to examine a prototy
cal model that admits a possibility of a variable substra
which is affected by the primary field~s! and feeds back into
its ~their! dynamics.

In this work, we introduce a simple one-dimension
model that captures some of the physically essential feat
of the interplay of a nonlinear system with a flexible su
strate. A natural setting for the model is a lattice with on-s
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nonlinearity, or its continuum counterpart~see below!, hence
the first ingredient of the system is the FK model~alias the
discrete sine-Gordon equation@11#!:

ün5CD2un2sinun , ~1!

whereC is the coupling constant~the spring constant, if we
consider adjacent sites as being coupled by springs!, D2un
5un111un2122un is the discrete Laplacian, while the la
term in Eq.~1! is the on-site nonlinearity. The overdot de
notes the temporal derivative, whilen indexes the lattice
sites. The FK model has a plethora of physical realizatio
the simplest one being Scott’s model, i.e., a chain of pend
suspended on a torque-elastic thread@12#.

The springs can be made nonlinear by assuming that
constantC in Eq. ~1! is replaced by asite-dependentone,
Cn5C01vn , whereC0 is a fixed mean value, whilevn is
the variation of the spring constant due to the variation of
displacementsun and un21 at the sites that the sprin
couples. The simplest nontrivial possibility, provided that w
aim to produce a Hamiltonian system, is to assume thavn
responds to a change in displacements according to the
lowing equation:

v̈n52@avn2k~un2un21!#, ~2!

wherea is an intrinsic stiffness of the spring~see below!,
andk accounts for its susceptibility to the stretch. We use
convention~see also a sketch of the system in Fig. 1! that the
nth spring connects the sitesn21 and n. To maintain the
Hamiltonian character and self-consistency of the model,
equation for the fieldun should then be modified@cf. Eq.~1!#
to read

ün5C0D2un2sinun1k~vn2vn11!. ~3!

In fact, the extra terms added to Eq.~3! can be easily under
stood in terms of the mechanical model: a difference in
value of the string constant produces a difference in the e
©2002 The American Physical Society21-1
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tic forces even if there is no change in the length of
springs. Equations~2! and ~3! follow from the Hamiltonian

H5(
n

F1

2
~ u̇n

21 v̇n
2!1

a

2
vn

21@12cos~un!#

1
C0

2
~un2un21!22kvn~un2un21!G .

We note that a somewhat similar~but still significantly dif-
ferent! two-component model was proposed to describe
coupling between protons and heavy ions in Ref.@13# ~see
also references therein!. A single-component model with
nonlinear springs was examined~mainly in terms of its ther-
modynamic properties! in Ref. @14#.

While this work is focused on the simplest model bas
on Eqs.~2! and ~3!, which includes only the linear couplin
between the fieldsun andvn , we note that a relevant gene
alization may involve quadratic couplings:

ün5C0D2un2sin~un!1k~vn2vn11!1rvn~un212un!

1rvn11~un112un!, ~4!

v̈n52Favn2k~un2un21!2
r

2
~un2un21!2G . ~5!

FIG. 1. Sketch of the model.vn is the deviation of thenth
spring constant fromC0 due to the discrete gradient of the displac
mentun .
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The origin of the quadratic terms is evident: they stem fro
second-order effects combining the change in the str
length and elasticity.

The continuum limit~CL! of Eqs.~4! and ~5! is

utt5uxx2sinu2kvx1r ~vux!x , ~6!

v tt52av1kux1
r

2
ux

2 , ~7!

where the constantsk andr were appropriately rescaled, an
the subscripts stand for partial derivatives. Settingr 50 in
Eqs.~6! and~7! yields the CL of Eqs.~2! and~3!. Note that,
even in the latter case, the Lorentz invariance of the
equations is broken~in comparison with the sine-Gordo
equation, which is the CL of the usual FK model!. An exact
solution for the static kink~the topological soliton in theu
subsystem! can be easily found~for the caser 50; a is then
rescaled to be 1!,

u54 tan21FexpS x2x0

A12k2D G , ~8!

v52
k

A12k2
sechS x2x0

A12k2D , ~9!

but exact solutions for moving kinks are not available ev
in the CL limit.

Also worth noting is the CL for the linear spectrum o
extended waves, which can be obtained by substitutinu
;A exp@i(Kx2Vt)# and v;B exp@i(Kx2Vt)# in the linear-
ized version of Eqs.~6! and ~7!. For r 50 and with the nor-
malizationa51, we obtain
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FIG. 2. A stable static intersite-centered kin
(un and vn components are shown by circles
the top left and top right plots, respectively! for
C051 andk50.5; solid lines connecting circles
are guides to the eye. For comparison, the fie
are also shown for the casek50, which corre-
sponds to the usual FK model~stars connected by
solid lines!. The bottom subplot shows the spe
tral plane (l r ,l i) of linear stability eigenvalues
l found from the linearization of Eqs.~2! and~3!
around the kink~for k50.5; the subscriptsr and
i refer to the real and imaginary parts of the e
genvalues!. The absence of eigenvalues with no
zero real part implies the stability of the kink
Here,a51.
1-2
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FIG. 3. The upper subplot shows the intersit
centered solution and its stability~top left and
right panels! for uku51.04 ~just prior to the
branch termination!, its bottom panel showing the
two stable internal-mode eigenvalues of th
intersite-centered kink~circles connected by the
solid line! vs k. The lower subplots show the
same for the unstable site-centered solution~the
two top panels are fork51.07, i.e., also just prior
to the termination of the corresponding branch;
the bottom subplot the circles show an intern
mode while the stars represent the unstable r
eigenvalue!. Note that the profiles of both kinks
are nonmonotonic.
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which consists of two phonon bands, one withA11uku,V
,`, and the other one withA12uku,V,1. Notice the
presence of a finite gap between these bands, provided
kÞ0. In the caseuku51, the lower branch of the linearize
spectrum is acoustic, while the upper one is always of
optical ~alias, plasmon! type.

Returning to the discrete case, there is no explicit solut
for the static case; however, after the substitution ofvn
5(k/a)(un2un21), which follows from Eq.~3!, the steady-
state equation forun becomes

~C02k2/a!D2un5sinun , ~10!

and hencek effectively renormalizes the lattice coupling. I
fact that is what can be observed from Eqs.~8! and ~9!, as
04662
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well as from Fig. 2: the effect ofk is to decrease the width o
the kink ~by a factor approximately equal touku, for k small!.
As is well known@11,15#, a narrower kink is less mobile. A
numerical solution of the static discrete equation~10! yields,
similarly to the case of the regular FK model@11,15#, two
types of steady-state discrete kinks, namely a stable inter
centered one~an example forC052k51 is shown in Fig. 2!
and an unstable site-centered one.

We have examined the variation of the static kink so
tions and of their linear stability eigenvalues~for small per-
turbations! as a function ofuku. Typical examples are show
in Fig. 3 for the stable and unstable kinks forC05a51. A
surprising finding in both cases is that the solutions could
continued for some rangebeyondthe pointuku51, which is
effectively equivalent to the zero-coupling~anticontinuum!
limit, see Eq.~10!. The shape of the solutions found foruku
1-3
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FIG. 4. Trajectories of a continuum-limi
kink, initially boosted to the velocityc50.2, ob-
tained from the numerical integration of Eqs.~2!
and ~3! at different values of k. k50, k
520.05, k520.15, andk520.25 correspond,
respectively, to the solid, dashed, dash-dott
and dotted lines. The trajectories are shown on
for a late stage of the time evolution.
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.1 is nonmonotonic~but they remain linearlystable!. These
solution branches terminate atuku'1.04 for the stable solu
tion, and atuku'1.07 for the unstable site-centered one.

The above-mentioned expectation that the kink becom
less mobile asuku increases is verified dynamically by takin
an initial kink boosted to the speedc50.2. Solving Eqs.~6!
and ~7! ~with r 50) with this initial condition for different
values ofk, we notice that, as is shown in Fig. 4, the kin
travels farther fork50 than it does forkÞ0, despite the fact
that the initial velocity is the same in all the cases. In oth
words, the effective velocity which the kink demonstrat
differs from that which was lent to it initially, and it als
depends onuku.

Finally, we have also examined kink-antikink collisions
the system of Eqs.~2! and ~3!. An example of this type is
shown in Fig. 5. In this case,C0516/9 (h50.75), and the
04662
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initial speeds of the kink and antikink are60.1. The figure
indicates the possibility of existence of parameter windo
for which the kinks eventually escape each other’s attrac
~upon multiple bounces!. Such windows lie between inter
vals of merger~kink-antikink annihilation into a breather!.
This feature is reminiscent of well-known findings of Re
@16# for kink-antikink collisions in continuum~noninte-
grable! models. However, unlike what was found in th
work, here the windows are in terms of the parameterk,
observed at a fixed value of the collision velocity.

An example of such a window~a characteristic case o
which is shown in Fig. 5! occurs for 0.176<k<0.179, even
though in the FK model~e.g., fork50, a case also shown in
Fig. 5!, for v50.1, only annihilation is possible. Notice tha
for this value~0.1! of the initial speed~and within our reso-
lution steps of 0.001 ink), no additional windows were iden
e
h-
FIG. 5. Kink-antikink collisions for C0

516/9 (h50.75) and initial speeds60.1 are
shown in terms of trajectories of centers of th
colliding kinks. The solid, dashed, and das
dotted lines correspond, respectively, tok50.0,
k50.178, andk50.2. The position of the kink
and antikink centersxc is shown as a function of
time t.
1-4
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tified. However, by considering different values of the init
speed~e.g.,v50.125), we have verified that typically mu
tiple such windows can occur. The dynamical behavior of
present model, which is essentially richer than in its F
counterpart, is provided for by the fact that the kink’s inte
nal mode is affected by variations of the coupling to t
substrate~see the discussion above!.

The case ofa50 in Eq.~2! has its own interest, as in thi
casevn may be regarded as an acoustic-phonon branch~the
one without a gap in its dispersion relation!, which interacts
with the optical~plasmon! branch represented by the fie
un . Equations~2! and ~3! with a50 furnish an elementary
example of this type of interaction. In this case, the equati
havesolelyuniform zero-velocity solutions. Nontrivial solu
tions may only exist with a finite speedc. In particular, the
model’s CL gives rise, in this case, to a double (4p) kink
~not shown here!, which is produced by the equation (
2c2)ujj2sin(u)1(k2/c2)uj50, where j[x2ct. However-
,this simplest version of the model witha50 is flawed, as its
Hamiltonian is unbounded from below, hence the mode
s:
.

ris
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not a well-posed one. It can be amended to fix this proble
keeping the optical-phonon and acoustic-phonon characte
the fieldsun andvn , but detailed consideration of this issu
is beyond the scope of the present work.

To conclude, in this work we have proposed a simp
prototypical model, that may be developed to describe
dynamics of kink-shaped excitations in more complex s
tems. A noteworthy extension would be the generalization
the model to two dimensions, which may be very relevant
physical applications. Furthermore, dissipative versions
the model can be of direct relevance to chemical and b
physical applications. Detailed consideration of higher-or
feedback effects, collisions between kinks, and long-liv
breatherlike states in this model would also be of interes
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