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Discrete nonlinear model with substrate feedback
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We consider a prototypical model in which a nonlinear fi@ddntinuum or discrefeevolves on a flexible
substrate which feeds back to the evolution of the main field. We identify the underlying physics and potential
applications of such a model and examine its simplest one-dimensional Hamiltonian form, which turns out to
be a modified Frenkel-Kontorova model coupled to an extra linear equation. We find static kink solutions and
study their stability, and then examine moving kirlkise continuum limit of the model is studied jodVe
observe how the substrate effectively renormalizes properties of the kinks. In particular, a nontrivial finding is
that branches of stable and unstable kink solutions may be extended beyond a critical point at which an
effective intersite coupling vanishes; passing this critical point does not destabilize the kink. Kink-antikink
collisions are also studied, demonstrating alternation between merger and transmission cases.
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Soft condensed matter systems, such as vesicles, microtnenlinearity, or its continuum counterpdsee below, hence
bules, and membranes, have recently attracted a lot of attethe first ingredient of the system is the FK modelias the
tion in both biological and industrial applicatiofjd—4].  discrete sine-Gordon equati¢pil]):

More generally, physical systems at the nanoscale including B

nanotubes and electronic and photonic waveguide structures u,=CA,u,—sinu,, €h)

[5,6] have nontrivial geometry and are influenced by sub- ) ] ) )

strate effects. These wide classes of problems, many d¥hereC is the coupling constarithe spring constant, if we
which are inherently nonlinear, raise the question of the infonsider adjacent sites as being coupled by springjsup,
terplay between nonlinearity and an adaptive substrate, in= Un+1+Un—1—2Up is the discrete Laplacian, while the last
cluding, in particular, a possibility of developing curvature in term in Eq.(1) is the on-site nonlinearity. The overdot de-
the substrate due to feedback forces from the nonlinear sy§otes the temporal derivative, while indexes the lattice
tem. Some of these systems such as, for instance, the DNgtes. The FK model has a plethora of physical realizations,
double strand7,8], are also inherently discrete. the simplest one being Scott's model, i.e., a chain of pendula

In this situation, the derivation of evolutionary equationssuspended on a torque-elastic thr¢ad].
for intrinsic fields in a nonlinear system interfacing with a ~ The springs can be made nonlinear by assuming that the
flexible substrate should take into regard the local dynamic§onstantC in Eq. (1) is replaced by asite-dependenbne,
and the feedback of the substrate. A context where thesen=Co+vn, WhereC, is a fixed mean value, while, is
phenomena can easily manifest themselves is elasticity. Ustie variation of the spring constant due to the variation of the
ally, models of particles connected by springs, such as thélisplacementsu, and u,-; at the sites that the spring
Frenkel-Kontorova FK) model[9], assume that the springs couples. The simplest nontrivial possibility, provided that we
are strictly linear. However, in reality the spring constantaim to produce a Hamiltonian system, is to assume ¢hat
may depend on the spring’s stretch. In this case, we ar&esponds to a change in displacements according to the fol-
meaning not a straightforward generalization of the FKlowing equation:
model that includes the spring’s anharmonicity, but a differ- )
ent system, in which the spring constant obeys its own dy- vn=—[av,—Kk(up—U,_1)], (2
namical equation, see below.

There is an increasing body of literature dealing with thewhere a is an intrinsic stiffness of the springee below,
interplay of nonlinearity, discreteness, and a substrate subjeandk accounts for its susceptibility to the stretch. We use the
to curvature. Usually, even if the substrate is curved, its geconvention(see also a sketch of the system in FigtHat the
ometry is assumed to Hixed see, e.g., Ref10]. However, nth spring connects the sites-1 andn. To maintain the
for many applications, ranging from condensed matter to opHamiltonian character and self-consistency of the model, the
tics to biophysics, it is quite relevant to examine a prototypi-equation for the fieldi, should then be modifieltf. Eq.(1)]
cal model that admits a possibility of a variable substratefo read
which is affected by the primary fielg) and feeds back into )
its (their) dynamics. u,=CoA,u,—sinu,+k(v,—vps1)- 3)

In this work, we introduce a simple one-dimensional
model that captures some of the physically essential featurds fact, the extra terms added to E) can be easily under-
of the interplay of a nonlinear system with a flexible sub-stood in terms of the mechanical model: a difference in the
strate. A natural setting for the model is a lattice with on-sitevalue of the string constant produces a difference in the elas-
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-1 Up Uni The origin of the quadratic terms is evident: they stem from
second-order effects combining the change in the string
WA BAVAWN— WA B length and elasticity.
The continuum limit(CL) of Egs.(4) and(5) is
Vo Vn+l
Uit = Uyy—SiNU—Ko,+r(vUy)y, 6
FIG. 1. Sketch of the model,, is the deviation of thenth T UxF (0l ©
spring constant fronC, due to the discrete gradient of the displace- r
mentu, . V= — av +Ku,+ Eui, (7)

tic forces even if there is no change in the length of the

springs. Equation£2) and(3) follow from the Hamiltonian where the constantsandr were appropriately rescaled, and

the subscripts stand for partial derivatives. Settirg0 in
Egs.(6) and(7) yields the CL of Eqs(2) and(3). Note that,
even in the latter case, the Lorentz invariance of the CL
equations is brokerfin comparison with the sine-Gordon
equation, which is the CL of the usual FK mogden exact
solution for the static kinKthe topological soliton in the
subsystemcan be easily foundfor the case =0; « is then
rescaled to be)l

H=3 (u +02 +gvﬁ+[l—cos{un)]

0 2
+ - (Up=Up_1) —kvp(Up—U,_1) |

5 (

We note that a somewhat similéut still significantly dif-

ferend two-component model was proposed to describe the U=4 tan ! exp( X—Xo ) ®)

coupling between protons and heavy ions in R&B] (see N

also references therginA single-component model with

nonlinear springs was examinéahainly in terms of its ther- K X—Xo

modynamic propertigsn Ref.[14]. v= qecr< ) , (9)
While this work is focused on the simplest model based V1-k? NS

on Egs.(2) and(3), which includes only the linear coupling
between the fields, andv,,, we note that a relevant gener-
alization may involve quadratic couplings:

but exact solutions for moving kinks are not available even
in the CL limit.

Also worth noting is the CL for the linear spectrum of
) extended waves, which can be obtained by substituting
Un=CoAoUp—sin(Up) +K(vn—=vns+1) +Tvp(Un—1—Up) ~Aexi(Kx—Qt)] and v~B exfi(Kx—Qt)] in the linear-
N ) ized version of Eqs(6) and (7). Forr=0 and with the nor-

+rv u —Uu iz ati i
n+1(Unt1 malizationa=1, we obtain

. r 1 1/2
Up=— avn—k(un—un,l)—E(un—un,l)z. (5) Q== 1+§K(Kt\/K2+4k§) ,

15

FIG. 2. A stable static intersite-centered kink

= c
- 3 > (u, andv, components are shown by circles in
2 05 the top left and top right plots, respectivelfpr
1 Co=1 andk=0.5; solid lines connecting circles
are guides to the eye. For comparison, the fields
o:® 00 105 0, 28%e A are also shown for the case=0, which corre-
n sponds to the usual FK modgtars connected by

solid lineg. The bottom subplot shows the spec-
tral plane {,,\;) of linear stability eigenvalues
. \ found from the linearization of Eq$2) and(3)
around the kink(for k=0.5; the subscripts and

i refer to the real and imaginary parts of the ei-
. genvalues The absence of eigenvalues with non-
zero real part implies the stability of the kink.
Here,a=1.

A+

=2}

-0.2 02

o om0 O (I -
1 1

046621-2



DISCRETE NONLINEAR MODEL WITH SUBSTRATE FEEDBACK

PHYSICAL REVIEW 66, 046621 (2002

0.6
0.4

0.2
<50
-0.2
0.4
06

-08

20.2

0.1

< FIG. 3. The upper subplot shows the intersite-
centered solution and its stabilitfop left and
right panelg for |k|=1.04 (just prior to the
branch terminatiop its bottom panel showing the
0 ' ' : ' ' ' : : ; two stable internal-mode eigenvalues of the
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Kk intersite-centered kinkcircles connected by the
solid line) vs k. The lower subplots show the
same for the unstable site-centered solufithe
06 I two top panels are fdr=1.07, i.e., also just prior
04 to the termination of the corresponding branch; in
c 02 the bottom subplot the circles show an internal
> < o o o mode while the stars represent the unstable real
< o2 eigenvalug Note_ that the profiles of both kinks
o4 are nonmonotonic.
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which consists of two phonon bands, one wiflh+ [k[<Q
<o, and the other one with/1—|k|<Q<1. Notice the

well as from Fig. 2: the effect d is to decrease the width of
the kink (by a factor approximately equal tk|, for k small.

presence of a finite gap between these bands, provided thAs is well known[11,15, a narrower kink is less mobile. A
k#0. In the caseék|=1, the lower branch of the linearized numerical solution of the static discrete equati@0) yields,
spectrum is acoustic, while the upper one is always of thgimilarly to the case of the regular FK modéll,15, two
optical (alias, plasmontype. types of steady-state discrete kinks, namely a stable intersite-
Returning to the discrete case, there is no explicit solutioréentered on¢an example foCy=2k=1 is shown in Fig. 2
for the static case; however, after the substitutionvgf —and an unstable site-centered one.
=(k/a)(u,—u,_1), which follows from Eq.(3), the steady- We have examined the variation of the static kink solu-
state equation fou, becomes tions and of their linear stability eigenvaluésr small per-
turbations as a function ofk|. Typical examples are shown
in Fig. 3 for the stable and unstable kinks 0g=a=1. A
surprising finding in both cases is that the solutions could be
continued for some rangeeyondthe point|k|=1, which is
effectively equivalent to the zero-couplin@nticontinuum
limit, see Eq.(10). The shape of the solutions found fid]

(Co—K? a)A,u,=sinu,, (10)

and hence effectively renormalizes the lattice coupling. In
fact that is what can be observed from E(®. and (9), as
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124 FIG. 4. Trajectories of a continuum-limit

kink, initially boosted to the velocitg=0.2, ob-
tained from the numerical integration of Eqg)
and (3) at different values ofk. k=0, k
=—0.05, k=—-0.15, andk=—0.25 correspond,
respectively, to the solid, dashed, dash-dotted,
and dotted lines. The trajectories are shown only
for a late stage of the time evolution.
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>1 is nonmonotoni¢but they remain linearlgtable. These initial speeds of the kink and antikink are0.1. The figure
solution branches terminate &~ 1.04 for the stable solu- indicates the possibility of existence of parameter windows
tion, and at/k|~1.07 for the unstable site-centered one.  for which the kinks eventually escape each other’s attraction
The above-mentioned expectation that the kink becomegipon multiple bouncgs Such windows lie between inter-
less mobile agk| increases is verified dynamically by taking vals of merger(kink-antikink annihilation into a breather
an initial kink boosted to the spe@d=0.2. Solving Eqs(6)  This feature is reminiscent of well-known findings of Ref.
and (7) (with r=0) with this initial condition for different [16] for kink-antikink collisions in continuum(noninte-
values ofk, we notice that, as is shown in Fig. 4, the kink grable models. However, unlike what was found in that
travels farther fok= 0 than it does fok+# 0, despite the fact work, here the windows are in terms of the paraméder
that the initial velocity is the same in all the cases. In otherobserved at a fixed value of the collision velocity.
words, the effective velocity which the kink demonstrates An example of such a windowa characteristic case of
differs from that which was lent to it initially, and it also which is shown in Fig. boccurs for 0.176:k<0.179, even
depends onk|. though in the FK modele.g., fork=0, a case also shown in
Finally, we have also examined kink-antikink collisions in Fig. 5), for v =0.1, only annihilation is possible. Notice that
the system of Egs2) and (3). An example of this type is for this value(0.1 of the initial speedand within our reso-
shown in Fig. 5. In this cas&;,=16/9 (h=0.75), and the lution steps of 0.001 ik), no additional windows were iden-

220 T T T T T
215 ]
210} e -
051 - T ] | FIG. 5. Kink-antikink collisions for Co
\ =16/9 (h=0.75) and initial speedst0.1 are
\'.’ \,\,,"-””-“-\_'4.:'\_,'\ M N W AN R shown in terms of trajectories of centers of the
«© 200} q ;i\‘ it b 1(_’;/#,;(? ~ i FA colliding kinks. The solid, dashed, and dash-
A v LA LATLY Ui dotted lines correspond, respectively, ke 0.0,
1051 4 - _ k=0.178, andk=0.2. The position of the kink
T~ and antikink centerg, is shown as a function of
T~ time t.
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tified. However, by considering different values of the initial not a well-posed one. It can be amended to fix this problem,
speed(e.g.,v=0.125), we have verified that typically mul- keeping the optical-phonon and acoustic-phonon character of
tiple such windows can occur. The dynamical behavior of thghe fieldsu,, andv,,, but detailed consideration of this issue
present model, which is essentially richer than in its FKis beyond the scope of the present work.

counterpart, is provided for by the fact that the kink’s inter- ~ To conclude, in this work we have proposed a simple,

nal mode is affected by variations of the coupling to thePrototypical model, that may be developed to describe the
substrate(see the discussion abgve dynamics of kink-shaped excitations in more complex sys-

The case ofr=0 in Eq.(2) has its own interest, as in this tems. A noteworthy extension would be the generalization of
the model to two dimensions, which may be very relevant for
physical applications. Furthermore, dissipative versions of
the model can be of direct relevance to chemical and bio-
physical applications. Detailed consideration of higher-order
feedback effects, collisions between kinks, and long-lived
Breatherlike states in this model would also be of interest.

casev, may be regarded as an acoustic-phonon brdtiah
one without a gap in its dispersion relatjpmhich interacts
with the optical (plasmon branch represented by the field
u,. Equations(2) and(3) with «=0 furnish an elementary
example of this type of interaction. In this case, the equation
havesolely uniform zero-velocity solutions. Nontrivial solu-
tions may only exist with a finite speexd In particular, the This research was supported by the U.S. Department of
model's CL gives rise, in this case, to a doubler{4kink  Energy under Contract No. W-7405-ENG-36. P.G.K. grate-
(not shown herg which is produced by the equation (1 fully acknowledges partial support from a University of
—C®)uge—sin(u)+(k%c?)u=0, where &=x—ct. However- Massachusetts Faculty Research Grant, from the Clay Foun-
,this simplest version of the model with=0 is flawed, as its dation, and from the National Science Foundation through
Hamiltonian is unbounded from below, hence the model iDMS-0204585.
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